

WEBVTT

1

00:00:37.390 --> 00:00:38.240

Jason Block: Hello!

2

00:00:39.090 --> 00:00:40.669

Sharon Saydah: Hello! How are you?

3

00:00:41.690 --> 00:00:42.780

Jason Block: Good! How are you?

4

00:00:43.080 --> 00:00:43.980

Sharon Saydah: Good.

5

00:00:45.540 --> 00:00:47.159

Sharon Saydah: So I can't remember. Do we

6

00:00:47.180 --> 00:00:50.840

Sharon Saydah: go on camera for this webinar, or are we off camera?

7

00:00:51.440 --> 00:00:52.420

Jason Block: And failure.

8

00:00:52.620 --> 00:00:54.110

Jason Block: Tanya, can you remind.

9

00:00:57.910 --> 00:00:59.389

Tonya Duhart Miller: That's on camera.

10

00:01:00.320 --> 00:01:01.250

Sharon Saydah: Okay.

11

00:01:01.250 --> 00:01:01.850

Tonya Duhart Miller: No.

12

00:01:02.840 --> 00:01:09.140

Jason Block: And tan Tania. I think the camera stuff is blocked. So I guess we just it's activated when we're ready to speak or something.

13

00:01:10.440 --> 00:01:14.969

Tonya Duhart Miller: I believe so. I'm not the host of this, but it should.

14

00:01:15.150 --> 00:01:17.359

Jason Block: Oh, oh, okay, maybe Haley's on, too.

15

00:01:17.920 --> 00:01:20.819

TFGH Central Zoom: Yeah, let me let me check the video

16

00:01:22.810 --> 00:01:24.210

TFGH Central Zoom: options.

17

00:01:51.270 --> 00:01:53.660

TFGH Central Zoom: So it it's not showing a

18

00:01:53.860 --> 00:01:55.469

TFGH Central Zoom: an option to

19

00:01:57.860 --> 00:01:59.750

TFGH Central Zoom: shit. Put your camera on.

20

00:02:00.510 --> 00:02:04.070

Jason Block: Yeah, it just says you cannot start your video because the host has stopped it.

21

00:02:05.110 --> 00:02:06.899

TFGH Central Zoom: Oh, let's see.

22

00:02:17.250 --> 00:02:18.450

Jason Block: Not a big deal, though.

23

00:02:19.640 --> 00:02:20.820

TFGH Central Zoom: Yeah, I can't.

24

00:02:22.480 --> 00:02:25.969

Sharon Saydah: Okay, it's not a big deal. I just wasn't sure. Yeah.

25

00:02:27.380 --> 00:02:29.300

TFGH Central Zoom: Yeah, sorry about that. I

26

00:02:29.880 --> 00:02:35.060

TFGH Central Zoom: I thought it would be somewhere more accessible. But I don't see it anywhere.

27

00:02:45.600 --> 00:02:50.030

TFGH Central Zoom: Hi, everyone. We're gonna give folks one or 2 more minutes to hop on, and then we'll get started.

28

00:04:43.120 --> 00:04:44.600

TFGH Central Zoom: Hi, everyone!

29

00:04:44.610 --> 00:04:56.809

TFGH Central Zoom: It's a little past 11 here on the east coast. So I'm gonna kick us off. Welcome to our quarterly coordinate. Cdc COVID-19, electronic healthcare data initiative webinar

30

00:04:57.930 --> 00:05:10.080

TFGH Central Zoom: we're gonna 1st have some opening remarks from Cdc and then we'll pass it to Jason to provide updates. So, Sharon, I'll pass it to you to provide some Cdc Updates or opening remarks.

31

00:05:11.770 --> 00:05:19.539

Sharon Saydah: Yeah, great. Thank you very much. And good morning, everyone. It's wonderful to be here and talking with all of you again.

32

00:05:19.941 --> 00:05:46.330

Sharon Saydah: I just wanted to really 1st thank everyone for their work on this project. Using this data source has really been invaluable for Cdc, we've been able to do a lot of work around COVID-19. And also as Jason's gonna highlight in the sense presentation, we've really been able to expand what we've been doing to use it for public surveillance and focus on other questions related to

33

00:05:46.831 --> 00:06:01.889

Sharon Saydah: screenings and gestational diabetes and really, highlights. The importance of this work for public health surveillance

in general. So with that I will turn it over to

34

00:06:02.210 --> 00:06:08.210

Sharon Saydah: Jason to go through all the work and everything that we've been accomplishing.

35

00:06:10.600 --> 00:06:14.970

Jason Block: Great thanks so much, Sharon. And really, if you appreciate everybody

36

00:06:15.140 --> 00:06:25.360

Jason Block: attending and Sharon for representing Cdc. And as as I think everybody knows who has been engaged

37

00:06:25.600 --> 00:06:27.389

Jason Block: in this project

38

00:06:27.690 --> 00:06:29.340

Jason Block: since the beginning.

39

00:06:29.780 --> 00:06:35.110

Jason Block: This has been a truly collaborative project and effort between

40

00:06:35.130 --> 00:06:45.359

Jason Block: Cdc. And Pocornet and Phii, and we we really have valued that interchange of both activities and ideas.

41

00:06:45.750 --> 00:06:54.959

Jason Block: So I'm going to share my screen. And I'm going to go over sort of where we are with this project what we've been doing for the last

42

00:06:57.480 --> 00:07:04.410

Jason Block: 6 months or so. I think our last presentation was actually about 5 months ago. So

43

00:07:04.530 --> 00:07:17.689

Jason Block: I will be kind of updating you on what we've accomplished in this contract year. I'll be touching in a bit more detail about

some of the specific queries that we've done

44

00:07:18.357 --> 00:07:27.190

Jason Block: in the last several months, just to give you a flavor of the type of results we've been producing. I'll close by talking about the dissemination efforts

45

00:07:27.200 --> 00:07:32.559

Jason Block: that we've been working on specifically around manuscripts, and then we'll close

46

00:07:32.610 --> 00:07:37.110

Jason Block: by, giving a general overview of where we're where I think we are

47

00:07:37.270 --> 00:07:57.879

Jason Block: on possible renewal contracts for the next contract year. I won't be monitoring the chat too much during the course of talking. But, please, Haley, if there's anything that seemed pertinent, feel free to interrupt me. And please put your questions in the QA. And we'll certainly get to it at the end, if not before.

48

00:07:59.770 --> 00:08:07.900

Jason Block: So just as a reminder to everyone about where we are with this project. During this contract year the current contract

49

00:08:08.619 --> 00:08:14.009

Jason Block: has been running from October of 2023 through the end of this month, July of 24.

50

00:08:14.460 --> 00:08:15.570

Jason Block: So we have

51

00:08:15.720 --> 00:08:21.290

Jason Block: a little bit more than a week left in this contract year.

52

00:08:21.380 --> 00:08:28.839

Jason Block: The scope of work that we set forward for sites for this 10 month contract was one to 2 queries per month.

53

00:08:29.070 --> 00:08:32.310

Jason Block: with an expected number of approximately 12

54

00:08:32.350 --> 00:08:39.819

Jason Block: on a range of topics. And this was really the 1st contract here, where we expanded the scope

55

00:08:39.960 --> 00:08:49.679

Jason Block: of public health surveillance from primarily focused on respiratory viral illnesses, or some other queries that

56

00:08:49.710 --> 00:08:59.470

Jason Block: explored some chronic disease during the pandemic to a more explicit, broadened agenda, which included respiratory viral illness.

57

00:08:59.480 --> 00:09:04.359

Jason Block: surveillance, but also some chronic disease topics that stood on their own.

58

00:09:05.190 --> 00:09:11.139

Jason Block: We asked the sites to be poised and prepared to refresh

59

00:09:11.150 --> 00:09:15.159

Jason Block: what we've been calling the Covid, Cdm. Which is the rapidly refreshed

60

00:09:15.350 --> 00:09:17.780

Jason Block: common data model that's filtered

61

00:09:18.090 --> 00:09:21.799

Jason Block: to a population that includes patients who

62

00:09:21.880 --> 00:09:25.990

Jason Block: have had some evidence of a respiratory viral illness.

63

00:09:26.524 --> 00:09:35.609

Jason Block: And we really requested that sites be poised to do that, but not necessarily be required to do it at a regular cadence, and it turned out that

64

00:09:35.820 --> 00:09:41.570

Jason Block: refreshing those Covid Cdms has really not been necessary for most of the sites over the course

65

00:09:41.600 --> 00:09:51.389

Jason Block: of most of this contract year, and I'll touch on that a little bit later. But suffice it to say that most sites were able to

66

00:09:51.550 --> 00:09:56.509

Jason Block: a a accomplish the queries that we needed to do respiratory illness, surveillance

67

00:09:56.580 --> 00:10:12.200

Jason Block: through queries of their common data, model their regular common data model. And we timed the queries on that topic to fall roughly just after when the common data models went through the regular refresh cycle for Percornet.

68

00:10:13.120 --> 00:10:18.570

Jason Block: We also asked sites to contribute patient level data sets for ongoing work, focused on respiratory illness.

69

00:10:18.650 --> 00:10:27.329

Jason Block: surveillance work with provision of this data to the Louisiana Public Health Institute.

70

00:10:27.340 --> 00:10:42.720

Jason Block: one of the cornet sites and the lead site for Reachnet, so that Cdc. Analysts and investigators could access that data on a server that sits at Lphi. So we have not shared data directly patient level data directly with Cdc. But rather made that available

71

00:10:42.840 --> 00:10:47.759

Jason Block: through a server where Cdc. Analysts and investigators could do some analyses

72

00:10:47.880 --> 00:10:55.269

Jason Block: and for sites to nominate authors, to contribute on collaborative authors as collaborative authors on manuscripts.

73

00:10:56.670 --> 00:10:59.240

Jason Block: So what what have we done during this year?

74

00:10:59.340 --> 00:11:01.240

Jason Block: So here's the list of

75

00:11:01.640 --> 00:11:24.180

Jason Block: 11 queries that we've completed, and the one that's in red is one that's in the network right now, and is really, for all intents and purposes, 2 queries. But we had expected to bundle this together, but we ended up splitting it apart because the topics were distinct and also the code list, and the structure of the query was ready at different times.

76

00:11:24.530 --> 00:11:29.060

Jason Block: But we started, the year focused on respiratory illness.

77

00:11:29.270 --> 00:11:39.899

Jason Block: surveillance. We did one of our standard respiratory viral illness, surveillance queries at the beginning of the contract, year following, after.

78

00:11:40.010 --> 00:11:45.189

Jason Block: when roughly, when the full common data models were

79

00:11:45.270 --> 00:11:50.220

Jason Block: updated. But some of the sites were still using their Covid Cdm. At that point

80

00:11:50.500 --> 00:11:58.040

Jason Block: we decided to do a data quality assessment, or really a feasibility assessment in November of that year.

81

00:11:58.250 --> 00:12:18.259

Jason Block: explicitly using the full Dcdm for the same query that we did in October, so that we could compare and contrast the results and determine whether or not it was going to be feasible. To just use the full Cdm. Moving forward, it turned out to be the case that we could. And so for the rest of the year, except for a handful of sites

82

00:12:18.350 --> 00:12:28.029

Jason Block: that had better Covid data in their covid Cdms. We asked the sites to run all of the queries on their full Cdm.

83

00:12:29.020 --> 00:12:33.420

Jason Block: We had a more directed query in December of 23 on

84

00:12:33.470 --> 00:12:38.870

Jason Block: flu cases. This was focused over the course of several flu seasons.

85

00:12:39.190 --> 00:12:57.609

Jason Block: It produced a limited patient level data set that is made available to CDC investigators looking at patients who are evaluated for flu initially in the outpatient setting, and this also looked at an expanded view of the use of medications for treatment of flu.

86

00:12:58.450 --> 00:13:02.710

Jason Block: We repeated our respiratory viral illness, surveillance, query in January.

87

00:13:04.380 --> 00:13:12.059

Jason Block: did a query that I'll touch on next on cardiac complications after covid in February.

88

00:13:12.280 --> 00:13:15.960

Jason Block: a query on pre-exposure prophylaxis for HIV. In March.

89

00:13:16.030 --> 00:13:18.720

Jason Block: This was really our 1st query. That

90

00:13:18.860 --> 00:13:26.609

Jason Block: was part of that suite of queries focused on chronic disease explicitly rather than just respiratory viral illness.

91

00:13:27.415 --> 00:13:28.030

Jason Block: And

92

00:13:28.352 --> 00:13:33.659

Jason Block: public health surveillance during the course of the

pandemic. I'll talk about that query in more detail.

93

00:13:34.010 --> 00:13:41.200

Jason Block: The next one in April was on gestational diabetes and pregnancy hypertension. I'll give some more detail on that query soon as well.

94

00:13:41.360 --> 00:13:53.560

Jason Block: We repeated the respiratory viral illness, surveillance in May, and as part of that also extracted an updated patient level data set to facilitate a series of analyses

95

00:13:53.700 --> 00:14:00.619

Jason Block: that I will discuss in terms of the planning for that later on. In the course of this

96

00:14:00.660 --> 00:14:05.820

Jason Block: in May we also did a Covid query that was focused on

97

00:14:05.870 --> 00:14:14.069

Jason Block: post covid stroke and venous thermal embolism that occurred up to a year after the initial Covid Index date

98

00:14:14.470 --> 00:14:17.799

Jason Block: in June. We updated the flu patient level data set

99

00:14:18.350 --> 00:14:35.930

Jason Block: with an aggregate query that accompanied it. And the one that's in the network right now is one that's looking at cancer screening and follow up testing and diagnoses and opioid overdoses, and then examining what happens to patients who present to the emergency department.

100

00:14:35.970 --> 00:14:39.369

Jason Block: or are admitted for opioid overdoses

101

00:14:39.480 --> 00:14:47.620

Jason Block: assessing patients who return to the emergency department over the course of a year following that index

102

00:14:47.930 --> 00:14:52.510

Jason Block: admission to the emergency department or inpatient setting, and also the use of

103

00:14:52.650 --> 00:14:57.769

Jason Block: medication treatment for opioid use. Disorder after patients are discharged

104

00:14:57.790 --> 00:14:59.610

Jason Block: from emergency department.

105

00:14:59.910 --> 00:15:29.280

Jason Block: So this is the suite of queries that we've completed this year, and as I think most of you know, all of our topics are really jointly determined by our core. Pcornet group, the coordinating center for this project that crosses between Harvard Pilgrim and Louisiana Public Health Institute. We also have a Pcornet Scientific Advisory Board that has one member from each of the clinical research networks participating in this project, and then we have a core team

106

00:15:29.380 --> 00:15:42.400

Jason Block: at CDC, 1 of whom is Sharon. Several other folks that we've been working with that also brings in some content matter expertise across various divisions of CDC

107

00:15:45.030 --> 00:15:49.279

Jason Block: talk a bit about logistics and infrastructure issues. Is that

108

00:15:49.840 --> 00:16:06.080

Jason Block: over the course of this last contract year we did have some queries that seem to really bog down when we tried to run it at sites. The one that had the biggest issue with this was one of our earliest queries in this contract year, on respiratory illness, viral surveillance.

109

00:16:06.140 --> 00:16:16.550

Jason Block: We noted that there were some structural issues with the query that had occurred when we had made some updates ironically to improve runtimes

110

00:16:16.640 --> 00:16:19.249

Jason Block: that we were able to troubleshoot and fix.

111

00:16:19.290 --> 00:16:26.069

Jason Block: And then we had some other additional issues with the query on gestational diabetes and pregnancy hypertension.

112

00:16:26.230 --> 00:16:33.730

Jason Block: That really was probably because of how we structured that query and the size of the query. In general.

113

00:16:33.810 --> 00:16:40.519

Jason Block: we've made a lot of tweaks to the modular program in order to improve these runtimes.

114

00:16:41.190 --> 00:16:59.259

Jason Block: But we also recognize that we sort of have met our limit as to the types of queries that we can do that are aggregate and ones that are highly complex likely will have long runtimes at sites, and that we have to accommodate that with the structure of the queries or limitations on

115

00:16:59.340 --> 00:17:01.989

Jason Block: the size of the queries that we run.

116

00:17:02.450 --> 00:17:26.880

Jason Block: We also know as part of this troubleshooting and working with the programmers who have developed the modular program that we have the opportunity to improve some of these queries over the course of time as well if needed. With some query, reengineering. We haven't yet embarked on that, because we don't yet have the conception that we're likely going to run queries that have been quite as complex as we've run in the past.

117

00:17:26.990 --> 00:17:31.099

Jason Block: But we do think we have some opportunities to improve that if we need to.

118

00:17:32.730 --> 00:17:36.219

Jason Block: as a summary of the infrastructure innovations that we've

119

00:17:36.230 --> 00:17:42.369

Jason Block: developed over the course of this project. And this is not just in this contract here, but over the course of

120

00:17:42.400 --> 00:17:49.870

Jason Block: the entirety of this work that we've done with Cdc. Is that sites develop the capacity to

121

00:17:50.375 --> 00:17:56.040

Jason Block: to stand up rapidly refreshed. Common data models that are on filtered populations.

122

00:17:56.200 --> 00:18:03.320

Jason Block: We no longer need this for the majority of sites, but we know that sites have the capability to do this in the future. If the need arises.

123

00:18:03.800 --> 00:18:07.469

Jason Block: We also have enhanced the reusable modular program quite a bit

124

00:18:07.890 --> 00:18:15.360

Jason Block: previously, that program really didn't have the opportunity to use mortality, immunization laboratory or payer type data

125

00:18:15.860 --> 00:18:17.449

Jason Block: to create cohorts

126

00:18:17.510 --> 00:18:19.720

Jason Block: or to characterize populations.

127

00:18:19.750 --> 00:18:23.749

Jason Block: And we have made those adjustments to accommodate that

128

00:18:23.790 --> 00:18:31.209

Jason Block: in the modular program in the last year we focused on enhancements using pair type data

129

00:18:31.380 --> 00:18:35.310

Jason Block: and also looked at pair type data. Really for the 1st

time, as part of this project.

130

00:18:36.020 --> 00:18:55.580

Jason Block: we can accommodate queries that are using laboratory and vital sign information for categorizing cohorts. And we've expanded that capability in the last year, as well on some of the work that we did on gestational diabetes and hypertension during pregnancy. And we can accommodate complex distributed analytics as needed

131

00:18:55.620 --> 00:18:57.770

Jason Block: as part of the modular program

132

00:19:01.200 --> 00:19:13.190

Jason Block: for the provision of patient level data. We started to do that in the last contract year, and we've expanded on the data sets that we provided to Cdc and this contract year, specifically, we've updated

133

00:19:13.310 --> 00:19:35.050

Jason Block: 2 of those data sets for patients with Covid. And we've produced 2 data sets, each of which were sequential. So in other words, the 1st data set was created. This was for flu. And then we have updated that. So really, essentially, we've had 2 patient level data sets that we've created. But we've updated them periodically

134

00:19:35.380 --> 00:19:44.639

Jason Block: for Covid. The Cdc currently has accessible data from April of 2022 to march of 24 for 27 sites for patients 20 years and older.

135

00:19:45.186 --> 00:19:50.880

Jason Block: As I mentioned, these were updated from prior queries, and we've added a few additional variables to accommodate

136

00:19:50.910 --> 00:19:56.989

Jason Block: planned analyses, including information on vaccines, some

137

00:19:57.000 --> 00:20:03.149

Jason Block: census linked data, and some additional information on medications that we didn't have previously.

138

00:20:03.410 --> 00:20:11.139

Jason Block: We expect to add the additional 7 sites that will produce the patient level data for this query. Sometime in the next week or 2. Hopefully.

139

00:20:11.770 --> 00:20:40.130

Jason Block: we have data that's available that we are working on creating an analytic data set right now for patients that had flu that were initially treated in the outpatient setting during the 2 most recent flu seasons, with the 23 to 24 season truncated through March of 24, because we ran this on the full Cdm. That had not yet been updated through the total end of the flu season. So it was truncated in March.

140

00:20:41.525 --> 00:20:47.960

Jason Block: and then this data, as I mentioned, is stored on an Lphi server with access to Cdc analysts.

141

00:20:49.200 --> 00:21:01.239

Jason Block: Okay. So now, I'm going to talk about some of the data that we've been producing recently, I'll start just giving you an update on the number of cases and a little bit of information about the epidemic curves that we've observed

142

00:21:01.440 --> 00:21:04.639

Jason Block: for respiratory illnesses

143

00:21:04.660 --> 00:21:14.250

Jason Block: over a several year period. Now and then I'll touch base in more detail about the credit complications. Query that we completed prep

144

00:21:14.851 --> 00:21:18.940

Jason Block: data. And then the gestational diabetes and hypertension.

145

00:21:19.370 --> 00:21:25.369

Jason Block: So this query was just completed includes data through March of 2024

146

00:21:25.590 --> 00:21:28.760

Jason Block: in terms of the total number of patients that we

147

00:21:28.930 --> 00:21:36.509

Jason Block: collected information on, and most of this is aggregate with some of it that produced some patient level data on Covid

148

00:21:36.740 --> 00:21:45.329

Jason Block: for children. We have data on just under 12 million patients overall. And these are patients that had an encounter.

149

00:21:45.430 --> 00:21:50.099

Jason Block: During this time, period of April 2022 to march of 24,

150

00:21:50.260 --> 00:22:02.479

Jason Block: 340,000 patients that had some indication of Covid. During that time 530,000 patients who had flu and just over 150,000 patients. With Rsv.

151

00:22:02.940 --> 00:22:28.590

Jason Block: In the most recent iteration of this query. We also segmented the population of patients with covid and flu. To those who had a long list of any of underlying medical conditions that were separately identified for covid and flu, and about a quarter of the children had some indication of some underlying medical condition for each of those viral illnesses

152

00:22:28.830 --> 00:22:32.860

Jason Block: for adults. We have data on about 30 million adults.

153

00:22:33.640 --> 00:22:37.080

Jason Block: 1.8 million patients who had some medication of

154

00:22:37.130 --> 00:22:41.920

Jason Block: covid, and about a 3rd of those had some medication that they were treated with Paxlovid.

155

00:22:42.310 --> 00:22:45.750

Jason Block: 437,000 patients

156

00:22:45.770 --> 00:22:51.289

Jason Block: with flu, and about half of those were treated with a flu medication and 40,000 with Rsv.

157

00:22:51.520 --> 00:22:57.570

Jason Block: And again we submitted segmented that population into those with underlying medical conditions.

158

00:22:57.660 --> 00:23:08.340

Jason Block: And it's really over half had some indication of a medical condition with slightly higher rates of treatment, with packed covid, or with flu medications for that population.

159

00:23:10.430 --> 00:23:19.249

Jason Block: This is the adult epidemic curves from October of 2022 through the end of March, and we had 2 separate components to this

160

00:23:19.350 --> 00:23:31.049

Jason Block: query, one of which was focused on October, through March, and the other of which that had more of a medication focus that started in April 2022. But this is data from October

161

00:23:31.220 --> 00:23:34.109

Jason Block: on the Y axis is the total count.

162

00:23:34.200 --> 00:23:37.450

Jason Block: and these are counts or cases per month.

163

00:23:37.740 --> 00:23:39.670

Jason Block: Covid is in blue

164

00:23:39.950 --> 00:23:42.480

Jason Block: flu is in green, and Rsv is in purple.

165

00:23:42.730 --> 00:23:53.719

Jason Block: and you can see more cases of covid that were identified over all times during the course of follow up and about even in March of 24, you can see that

166

00:23:53.750 --> 00:24:08.810

Jason Block: the epidemic curves peaked just around late December into January of 2022, and similar in 23 with that summer peak that we're also observing now of Covid, but not for flu.

167

00:24:09.030 --> 00:24:15.300

Jason Block: Rsv has a similar peak but way, fewer cases for adults than we observe for covid in flu.

168

00:24:16.670 --> 00:24:43.479

Jason Block: Here's the same version of that, but for children these are people under the age of 20 years, whereas adults are 20 years and older. And here you see similar trends in general, but much higher rates of flu compared to covid and higher rates, or just about similar rates of Rsv. Compared to Covid. But the peaks are about the same as we observe for adults. But you can just see the green which is flu

169

00:24:43.500 --> 00:24:47.210

Jason Block: is is much higher than we see for Covid.

170

00:24:49.820 --> 00:25:01.080

Jason Block: Okay, that's just giving you an update of kind of the numbers and the type of scope of patient populations that we have available to us for the varied work that we're doing in this project.

171

00:25:02.640 --> 00:25:24.469

Jason Block: The next work that I want to highlight is some work that started in 2022 when we were looking at cardiac outcomes after Covid infection. We compared those to cardiac outcomes after patients received mRNA vaccinations. And this was a priority area for CDC

172

00:25:24.590 --> 00:25:27.650

Jason Block: that we identify incidents

173

00:25:27.670 --> 00:25:48.180

Jason Block: of cardiac outcomes specifically myocarditis, pericarditis and mis, and that we compare the relative incidence of those occurrences after covid infection to those that occurred after vaccines, and we found that across all segments of

174

00:25:48.180 --> 00:26:13.980

Jason Block: sex and age stratified populations, that the incidence was higher after covid infection than it was after receiving a vaccination. So that was something we published in Mmwr. In 2022. We decided that we wanted to do a follow up on this, and CDC. Encouraged us to do this, but this is a query that was focused only on patients

who had covid infections.

175

00:26:14.100 --> 00:26:19.680

Jason Block: and we wanted what we wanted to look at in the time period of this investigation was January of 2022, through

176

00:26:19.850 --> 00:26:21.869

Jason Block: the end of 2023

177

00:26:21.920 --> 00:26:29.349

Jason Block: was to compare the incidence of these same outcomes among patients who had covid but

178

00:26:29.420 --> 00:26:36.770

Jason Block: care. But comparing those who had some prior evidence of an Mrna coat vaccination to those who did not

179

00:26:37.410 --> 00:26:46.989

Jason Block: so only focused on the segment of patients who had an infection, but then stratifying them, based on whether or not we had evidence for a prior vaccination.

180

00:26:47.540 --> 00:26:58.219

Jason Block: We expanded this look to patients 6 months of age, and up we stratified all of our assessments by age and sex. This only used aggregate data. So not any patient level data for this.

181

00:26:58.620 --> 00:27:18.640

Jason Block: and, as I mentioned, we looked at 2 cohorts, all of whom had some objective evidence of a Sars-cov-two or Covid infection, either a positive test or use of a covid-specific therapeutic. And then we looked at those who had a documented MRNA covid vaccine 30 or more days prior to infection, and those who did not.

182

00:27:19.310 --> 00:27:22.769

Jason Block: We exclude a patient who had vaccine in the 30 days prior to index

183

00:27:22.810 --> 00:27:26.360

Jason Block: those who had outcomes in the year prior to index.

184

00:27:26.440 --> 00:27:32.880

Jason Block: and we had to exclude a couple of sites that had really really low vaccination rates, meaning that we probably.

185

00:27:32.910 --> 00:27:36.879

Jason Block: even though we know that overall ascertainment of vaccination is not

186

00:27:37.010 --> 00:27:48.260

Jason Block: perfect by any means. There were some sites that had exceedingly low vaccination rates, and so we knew that we were missing the majority of patients that had vaccines who were going to those sites.

187

00:27:48.340 --> 00:27:59.909

Jason Block: We looked at incidence of 3 separate outcomes, myocarditis alone, myocarditis or pericarditis, and the combination of myocarditis, pericarditis.

188

00:28:00.020 --> 00:28:05.140

Jason Block: or multi-inflammatory syndrome or mis. And we looked at this incident per 100,000

189

00:28:07.412 --> 00:28:14.120

Jason Block: we obtain aggregate output. We calculated these incidence rates per 100,000 in different risk, windows after infection

190

00:28:14.310 --> 00:28:34.870

Jason Block: just prior to infection, documentation, and then 7 and 21 days after. And then the risk ratios that I'll show you some graphs for compared to vaccines. So those patients who had evidence of vaccine prior to those who had no evidence of vaccine, and then did some basic statistics to examine those data.

191

00:28:36.580 --> 00:28:48.499

Jason Block: This is the characteristics of the patient population that we captured information on. So we had just under 530,000 patients who had covid infection and a prior documented vaccine.

192

00:28:48.810 --> 00:28:53.509

Jason Block: and then just over 800,000 that had no prior document

vaccine.

193

00:28:54.100 --> 00:29:04.560

Jason Block: You can see here, just in the presentation of the percentages and the numbers, the group that had evidence of prior document vaccine

194

00:29:05.015 --> 00:29:09.479

Jason Block: tended to be older than those who had no documented vaccine.

195

00:29:10.580 --> 00:29:12.199

Jason Block: There was a

196

00:29:12.770 --> 00:29:23.170

Jason Block: lower our proportion of male sex among those with prior vaccine compared to those with no with no prior vaccine.

197

00:29:23.946 --> 00:29:25.340

Jason Block: So a

198

00:29:25.810 --> 00:29:32.690

Jason Block: a lower, yeah, a lower percentage of patients who had male sex among those with prior vaccine.

199

00:29:33.260 --> 00:29:42.430

Jason Block: And then you can see the racial and ethnic breakdown here, which is that we had a higher proportion of patients who are non-hispanic white

200

00:29:42.500 --> 00:29:52.869

Jason Block: among those with prior documented vaccine compared to no vaccine, and then a lower percentage of patients who are non-hispanic non-whites among those with prior vaccine

201

00:29:53.210 --> 00:29:57.750

Jason Block: underlying conditions were also more common among those who had prior vaccination.

202

00:29:58.990 --> 00:30:00.729

Jason Block: So I'm just going to show you 2

203

00:30:00.780 --> 00:30:19.049

Jason Block: graphs that are presenting the risk ratios and overall what this is showing is risk ratios for patients for a couple of the outcomes, and here I just present myocarditis, and then the combination of myocarditis pericarditis, and mis

204

00:30:19.280 --> 00:30:23.959

Jason Block: stratified by age. And this is just looking at male sex right here

205

00:30:23.970 --> 00:30:35.890

Jason Block: in the 21 day period after the index event and the risk ratio is the incidence of patients who had these outcomes among those who had prior vaccinations

206

00:30:36.070 --> 00:30:41.909

Jason Block: compared to those who did not have prior or had no documented prior vaccination.

207

00:30:42.110 --> 00:30:56.469

Jason Block: And what you can see here is that all the risk. Ratios that we calculated are under one meaning, that the incidence of these cardiac outcomes was lower among those who had prior vaccination compared to those who had no documented vaccine

208

00:30:56.865 --> 00:31:05.389

Jason Block: but these were. They tended to be large confidence intervals that crossed one for most of the populations, except for the oldest age group.

209

00:31:05.570 --> 00:31:20.699

Jason Block: and one of the outcome assessments that we did among patients who are 5 to 11 years of age, who had this triple outcome, or one of these 3 outcomes myocarditis, pericarditis, or mis.

210

00:31:20.860 --> 00:31:29.565

Jason Block: There were no cases of these outcomes in some of the populations, and so we actually couldn't calculate risk ratios

211

00:31:29.990 --> 00:31:46.079

Jason Block: But you can see overall that that the assessment was that generally vaccinations seemed to be protective for these events. But that these were rare events and the confidence intervals were large, so we couldn't confidently conclude that these were significant

212

00:31:46.110 --> 00:31:49.330

Jason Block: reductions in the risk of these events.

213

00:31:50.150 --> 00:31:51.570

Jason Block: After vaccination.

214

00:31:52.800 --> 00:32:05.510

Jason Block: This is a graphic for females. You can see again very large confidence intervals. For most of these. The trend or the kind of appearance, is that most of them are under one.

215

00:32:05.610 --> 00:32:17.360

Jason Block: but that we had significant findings in the oldest population of a lower risk of these cardiac outcomes. Among those who had prior vaccination compared to not

216

00:32:18.300 --> 00:32:34.809

Jason Block: this work is currently being put together into a manuscript that CDC has been reviewing. After we get their comments, we're going to get a broader group of people who are involved on the writing group for this paper to provide feedback.

217

00:32:34.840 --> 00:32:40.719

Jason Block: Then we'll be packaging, packaging it for a submission to a manuscript, and we'll get collaborative author feedback

218

00:32:40.840 --> 00:32:43.090

Jason Block: from site representatives as well.

219

00:32:43.381 --> 00:32:48.930

Jason Block: So there's a lot of other pieces to this paper. But I'm just giving you a flavor of what we produced for this.

220

00:32:49.110 --> 00:32:53.839

Jason Block: So our overall conclusion for that was that there

appeared to be a lower risk of

221

00:32:53.960 --> 00:32:57.430

Jason Block: these cardiac outcomes among those who had been vaccinated.

222

00:32:57.660 --> 00:33:21.920

Jason Block: There are plenty of caveats with that work, not the least of which is that our ascertainment of prior vaccination information is by no means perfect, and we know that we're missing a lot of prior vaccination. The benefit of doing this in this way in the manner that we did is that that would probably bias the results toward the null. So those findings that we do have we felt pretty confident in disseminating that work.

223

00:33:23.620 --> 00:33:45.199

Jason Block: Okay, I'm going to shift Gears a bit to talk about the next query where I wanted to provide some data. And this was a query that has been a priority for CDC. For quite some time, and in March of this year we had the opportunity to do a detailed assessment of the use of medications for pre-exposure prophylaxis for HIV

224

00:33:45.530 --> 00:34:04.679

Jason Block: as part of the development. For this query we did a lot of infrastructure development. Around being able to use information on payer status to characterize cohorts and to assess populations. And so that was really driven by the interest from CDC in getting information on payer type.

225

00:34:06.230 --> 00:34:15.489

Jason Block: This is a query that was distributed in March. All the data marts participated in this. It covered a time period of January 2017.

226

00:34:15.560 --> 00:34:17.850

Jason Block: Through the end of 2023

227

00:34:18.650 --> 00:34:28.129

Jason Block: we assessed cohorts of patients that had prescriptions for pre-exposure, prophylaxis for HIV medication that were 16 of years of age and older.

228

00:34:28.210 --> 00:34:31.880

Jason Block: and had at least one encounter. During the query period

229

00:34:32.830 --> 00:34:40.170

Jason Block: we had to exclude patients who received medications for post-exposure prophylaxis for HIV. Which is another set of medications.

230

00:34:40.612 --> 00:34:44.487

Jason Block: Who had received this within 30 days of their index prep. Prescription.

231

00:34:45.449 --> 00:34:53.149

Jason Block: and then also excluded patients who had diagnoses that might lead to patients receiving some of the medications that we assessed in this query

232

00:34:54.330 --> 00:35:15.480

Jason Block: I'm giving you here, and these are slides that are produced by Liz Kroll at the Louisiana Public Health Institute. She had really processed a lot of the data for this, and is involved in trying to pull together data that will be used for dissemination. But this is just a glimpse of the type of results that we produced with this query.

233

00:35:16.040 --> 00:35:18.990

Jason Block: The 1st was looking at the total numbers of patients

234

00:35:19.090 --> 00:35:20.590

Jason Block: that received

235

00:35:20.660 --> 00:35:26.100

Jason Block: prep. Prescriptions over the course of the study period, and you can see it steadily, grew

236

00:35:26.200 --> 00:35:37.960

Jason Block: with some flat prescriptions from 2017 through about 2020, with rises in 2021, and then, especially in 2020 and 2023,

237

00:35:38.760 --> 00:35:44.900

Jason Block: the total number of patients would receive prep was about

127,000 mean age 36.

238

00:35:45.110 --> 00:35:49.489

Jason Block: There's a much higher percent. And I'll show you this shortly of of patients

239

00:35:49.740 --> 00:35:55.650

Jason Block: who receive prep. If they have commercial insurance compared to other insurance types, especially Medicaid.

240

00:35:55.720 --> 00:36:00.269

Jason Block: And most of the patients who received these prescriptions were living in an urban area.

241

00:36:00.675 --> 00:36:03.820

Jason Block: This graphic, which is a map of the Us. Just shows

242

00:36:03.990 --> 00:36:10.420

Jason Block: where the data marks are located that contributed data to this analysis. And we have a couple of

243

00:36:10.450 --> 00:36:23.410

Jason Block: states where we had more than one site that was contributing data, especially New York and North Carolina. But you can see a couple other states that had more than one sites that contributed data.

244

00:36:25.520 --> 00:36:35.069

Jason Block: This is a breakdown with a pie chart and a bar graph for the breakdown of patients by race

245

00:36:35.230 --> 00:36:37.430

Jason Block: in the population that we assess

246

00:36:37.440 --> 00:36:41.850

Jason Block: in the pie chart. We just look at the proportion of all patients who had received prep.

247

00:36:42.110 --> 00:36:44.720

Jason Block: Who were white in blue.

248

00:36:45.228 --> 00:36:49.259

Jason Block: black or African, American and green here other race.

249

00:36:49.270 --> 00:36:57.289

Jason Block: which is all of the other racial groups combined in light green, and then those who had missing race here in gray.

250

00:36:57.810 --> 00:37:04.499

Jason Block: Then Liz also calculated the proportion of all patients in these data marts.

251

00:37:04.570 --> 00:37:07.090

Jason Block: which is about 44 million total

252

00:37:07.260 --> 00:37:13.429

Jason Block: who had received a prep prescription. So this is basically looking at the percent of patients

253

00:37:13.500 --> 00:37:15.100

Jason Block: within race

254

00:37:15.210 --> 00:37:16.520

Jason Block: categories

255

00:37:16.550 --> 00:37:20.239

Jason Block: who had received a prep prescription over the course of this time.

256

00:37:20.440 --> 00:37:31.409

Jason Block: So it's about point 2 5% of black or African American patients point 2 3% of white patients and point 2 9% of patients who are of one of the other racial categories.

257

00:37:33.210 --> 00:37:35.259

Jason Block: This is the breakdown by payer type.

258

00:37:35.970 --> 00:37:41.290

Jason Block: Here on the paragraph is the proportion of patients who

had different pair types

259

00:37:41.350 --> 00:37:53.349

Jason Block: across all of the patients who had received a prep prescription. And then again, on the bar graph, we see the proportion, the percent of patients of all patients in the data. Mark who had had an encounter

260

00:37:53.360 --> 00:37:56.049

Jason Block: who had received a prep prescription by paratype.

261

00:37:56.700 --> 00:38:02.500

Jason Block: So by far and away the largest insurance type that we observed among patients across

262

00:38:03.220 --> 00:38:05.139

Jason Block: the populations was

263

00:38:05.170 --> 00:38:07.920

Jason Block: commercial insurance, which is 43%.

264

00:38:07.990 --> 00:38:12.759

Jason Block: We have a lot of missing data for paratype in gray here, which is 34%.

265

00:38:12.860 --> 00:38:39.009

Jason Block: And then we have some of the other pair types that are represented Medicaids in blue at 13%, and some of the other ones are much smaller here. Most of the patients receiving prep, for example, were not on Medicare. The mean age was in the thirties. So we have a much smaller percent of the proportion of patients who are on Medicare, who had received a prep prescription. And this is what I had referred to in that overview slide, which is that

266

00:38:39.010 --> 00:38:49.739

Jason Block: about just under 2% of all patients with commercial insurance had received a prep prescription compared to much lower percent for any of the other pair types that we observed.

267

00:38:50.090 --> 00:39:05.259

Jason Block: This work obviously, is limited by the fact that we have

a lot of missing data for payer type that we have been doing some troubleshooting work with sites to try to improve that data with the conception of perhaps using this data, moving forward

268

00:39:06.670 --> 00:39:26.789

Jason Block: the overall findings, in addition to what I had summarized at the beginning, which is, that when we examine the rates of use of prep prescriptions across the population, compared comparing different subgroups, we saw the highest proportion in people between the ages of 25, and 34

269

00:39:26.840 --> 00:39:40.430

Jason Block: male race, the overwhelming majority of male sex, the overwhelming majority of patients who receive prep. Were male. Other race had a higher proportion than some of the other racial groups. Hispanic groups compared to non-hispanic

270

00:39:40.580 --> 00:39:43.082

Jason Block: those who are in urban settings,

271

00:39:43.680 --> 00:39:53.490

Jason Block: patients who lived in areas with high area deprivation, those with commercial insurance and those who had residential addresses somewhere on the Pacific Coast.

272

00:39:53.680 --> 00:40:02.579

Jason Block: And then we found very, very low prescriptions of Prep in the South, despite the fact that this has the highest HIV prevalence of all areas of the country.

273

00:40:04.880 --> 00:40:09.469

Jason Block: Okay, so that's giving you a flavor of the type of work that we would have been doing on prep.

274

00:40:09.840 --> 00:40:22.859

Jason Block: That information that we produce from that query is being pulled together by a joint writing group of cornet and CDC folks, with the plans to actually put together a manuscript that could be disseminated.

275

00:40:24.410 --> 00:40:43.020

Jason Block: The last area that I'll I'll touch on that. We've done

some work over. The course of this year is on gestational diabetes and pregnancy, hypertension, surveillance, and this was a query that I mentioned before that was really complicated. It was really large, and so was not able

276

00:40:43.080 --> 00:40:50.629

Jason Block: to be run by all of the sites, but the majority of sites were able to run this query. And so this is the data that we produced for it.

277

00:40:51.490 --> 00:40:58.239

Jason Block: So we created a cohorts of patients with incident, gestational diabetes and patients with

278

00:40:58.330 --> 00:41:04.040

Jason Block: some indication that they had hypertension either just before or during pregnancy.

279

00:41:04.726 --> 00:41:08.760

Jason Block: So we 1st identified any cohort of patients who had a delivery

280

00:41:09.278 --> 00:41:17.019

Jason Block: and then from that we looked at patients with incident, gestational diabetes or diabetes diagnosed for the 1st time during pregnancy.

281

00:41:17.150 --> 00:41:26.239

Jason Block: And then again we focused the hypertension assessment among those with prevalent hypertension that was either identified prior to or during pregnancy.

282

00:41:26.620 --> 00:41:38.409

Jason Block: We stratified this query by year and by race and ethnicity, and we separately assessed levels of blood pressure control after pregnancy. And I'll be touching on that a little bit when I present this information.

283

00:41:39.820 --> 00:41:54.150

Jason Block: So we collected a lot of information on these individuals with separate cohorts for those with gestational diabetes or diabetes diagnosed in pregnancy and hypertension. We looked at demographics. We

looked at underlying conditions.

284

00:41:54.370 --> 00:41:59.399

Jason Block: We looked at events that occurred during the course of pregnancy.

285

00:41:59.460 --> 00:42:23.710

Jason Block: like eclampsia, glucose measurements, oral glucose tolerance, test visits, Metformin, use insulin use. And then some of the diagnoses that we focused on for this query. We also looked at delivery outcomes. So induction, instrumental deliveries, C-sections, postpartum, hemorrhage preterm birth, stillbirth, and a couple other outcomes. I'll just show you a bit of that information now.

286

00:42:25.080 --> 00:42:31.599

Jason Block: So for gestational diabetes or diabetes that was 1st diagnosed during the course of pregnancy.

287

00:42:32.328 --> 00:42:43.510

Jason Block: What I'm showing you here is a table that breaks down that breaks down table. But data by year. So 18 to 1920 to 21 and 22 to 23.

288

00:42:44.130 --> 00:43:04.269

Jason Block: In the 1st column are the total number of deliveries that we assessed, and that we found over the sites that participated in this query, and more sites were able to contribute data to the hypertension part of this query than the gestational diabetes. So you'll see more deliveries when I present that data than in this one.

289

00:43:04.480 --> 00:43:16.689

Jason Block: Basically just over 300,000 deliveries were identified in 18 to 19 and 20 to 21, and then 336,000, in 22 to 23.

290

00:43:17.130 --> 00:43:28.099

Jason Block: The number of those deliveries that had no prior evidence of diabetes is presented in the next column. So the overwhelming majority had no prior evidence of diabetes.

291

00:43:28.130 --> 00:43:42.039

Jason Block: And then among that group. So that's the denominator. The deliveries, with no prior evidence of diabetes. We looked at the

percent of patients that were diagnosed with gestational diabetes or new diabetes during pregnancy.

292

00:43:42.350 --> 00:43:48.059

Jason Block: The percent of those increased slightly from 18 to 19 to 2022 to 23

293

00:43:48.080 --> 00:43:50.670

Jason Block: from 8% to just under 10%.

294

00:43:50.750 --> 00:44:17.519

Jason Block: And then you can see the different percents by race and ethnicity with people of Hispanic ethnicity, having higher percents, with gestational diabetes, and those of white race, having lower with the highest rates, actually found among those of other race where we found a range of 12.7% to 15.4% who had gestational diabetes or evidence of new diabetes. During Covid.

295

00:44:18.700 --> 00:44:30.440

Jason Block: we looked at delivery outcomes. And I'm just showing you one example of the type of data that we produce for this, we looked at the percent of patients who had gestational diabetes or diabetes during pregnancy.

296

00:44:30.480 --> 00:44:39.890

Jason Block: who ended up having one of these events, and we compared that to patients who had no gestational diabetes, so no gestational diabetes is in blue

297

00:44:39.960 --> 00:44:44.820

Jason Block: and gestational diabetes or diabetes newly diagnosed during pregnancy is in green.

298

00:44:45.250 --> 00:44:56.429

Jason Block: What you can see is that among all the delivery outcomes that we looked at, there's slightly higher percentages among those who had gestational diabetes so slightly higher percent of induction.

299

00:44:56.930 --> 00:45:10.539

Jason Block: for the pregnancy, similar, instrumental, deliberately slightly higher percent of C-sections postpartum, hemorrhage, preterm birth and preeclampsia, or Eclampsia with very low rates of some of

the other outcomes that we looked at.

300

00:45:12.410 --> 00:45:19.960

Jason Block: Cdc is currently doing a lot of work to assess the data that we produced for this query to decide what might be useful for dissemination here.

301

00:45:21.740 --> 00:45:27.639

Jason Block: This is the group of patients that we identified that had prevalent hypertension so diagnosed before or during pregnancy.

302

00:45:28.070 --> 00:45:34.110

Jason Block: You can see the same table. This is structured similarly to what I presented before.

303

00:45:34.603 --> 00:45:45.940

Jason Block: By time, the years for this query, the total number of deliveries, which is higher than what we had for the prior query, because more sites were able to run this component of the query.

304

00:45:46.010 --> 00:45:54.220

Jason Block: Then the gestational diabetes diabetes one, and then the number of deliveries among patients who had no hypertension.

305

00:45:54.820 --> 00:46:16.999

Jason Block: So the percent of patients of the overall population. So this is now because this is prevalence. This is of the overall population. So the 1st column, as the denominator you can see the percent who had a diagnosis of hypertension before during pregnancy range from 16.2% in 18 to 19 to 22% in 22 to 23,

306

00:46:17.190 --> 00:46:39.749

Jason Block: with some differences by race and ethnicity, the lowest rates for those who are either Hispanic or white race with higher rates of those patients who are black race, or in some cases other race. There was a lot of variability in that over the course of time, but higher certainly in 2223,

307

00:46:39.760 --> 00:46:42.340

Jason Block: than some of the other groups that we found

308

00:46:43.930 --> 00:46:52.070

Jason Block: similar to the Diabetes graphic that I showed you. This is for patients who had hypertension in green or no hypertension in blue

309

00:46:52.815 --> 00:47:01.510

Jason Block: and this is looking at different delivery outcomes, and in this case we didn't see such a clear delineation of higher rates

310

00:47:01.620 --> 00:47:13.239

Jason Block: of these outcomes among patients with hypertension except preeclampsia and Eclampsia, and not surprisingly and slightly higher rates of preterm birth. But we actually saw, for example, higher

311

00:47:13.340 --> 00:47:20.049

Jason Block: proportion to patients who didn't have hypertension, who had inductions for their deliveries compared to those who had hypertension.

312

00:47:20.482 --> 00:47:28.660

Jason Block: So again, lots of lots of other data that was produced as part of this. And Cdc is working on what we might disseminate for this work.

313

00:47:28.930 --> 00:47:33.925

Jason Block: One of the other core areas that they wanted to look at was

314

00:47:34.360 --> 00:47:47.369

Jason Block: to assess what blood pressure measurements were after deliveries occurred. So what were the range of, or the categorizations of blood pressure measurements among patients who had hypertension

315

00:47:47.530 --> 00:47:49.210

Jason Block: after the delivery?

316

00:47:49.660 --> 00:47:57.469

Jason Block: So we looked in the period immediately post delivery, and there were very few measurements of blood pressure control in that time period.

317

00:47:58.390 --> 00:48:09.639

Jason Block: So we also looked at blood pressure control 7 to 84 days after delivery. And again these were patients with hypertension. And here you can see the different years in blue, green, and purple.

318

00:48:09.880 --> 00:48:16.759

Jason Block: 2018 to 2019 in blue, 2020 to 2021 in green and 22 to 23 in purple.

319

00:48:17.327 --> 00:48:27.260

Jason Block: And you can see fairly similar breakdowns across the different years. But you can see the percent that had well controlled blood pressure. Some percent had

320

00:48:27.300 --> 00:48:39.880

Jason Block: modestly uncontrolled blood pressure. In that time, period 20 in the 130 to 139, over 80 to 89, and just under 10% in the next category up, and relatively few

321

00:48:39.940 --> 00:48:49.459

Jason Block: that had this really really uncontrolled blood pressure, a lot of missing data. So we only had measurements on about 60% of the population.

322

00:48:50.150 --> 00:48:52.210

Jason Block: When we look at the same breakdown.

323

00:48:52.280 --> 00:49:10.740

Jason Block: but instead of including those who had missing measures excluding those who had missing measures, you can see the breakdown here just about half had pretty well controlled blood pressure. And then you can see the breakdown across the various categories. Still, a low percent that had very, very uncontrolled blood pressure.

324

00:49:14.140 --> 00:49:21.129

Jason Block: Okay? Now, I'm going to shift in the closing minutes here, just to talk about the manuscripts that we've published.

325

00:49:21.520 --> 00:49:27.280

Jason Block: And those that are in process right now that you would expect to hear about over the coming

326

00:49:27.860 --> 00:49:40.590

Jason Block: months. So we published 3 manuscripts roughly in the last year that had site author contributions collaborative authors that we had review these papers. 2 of them have been published.

327

00:49:40.700 --> 00:49:43.520

Jason Block: one in the Journal of the American Heart Association

328

00:49:43.600 --> 00:49:49.619

Jason Block: on the Association between hypertension, diabetes, control and covid severity, and another one looking at

329

00:49:49.640 --> 00:49:59.150

Jason Block: predictors of long covid across a variety of different symptoms and conditions that was published in Bmc. Infectious diseases.

330

00:49:59.600 --> 00:50:11.480

Jason Block: There's a paper that's looking at trends and preventive service utilization and new chronic disease diagnoses during the pandemic that will be published in preventing chronic disease, the journal that the Cdc.

331

00:50:11.970 --> 00:50:16.789

Jason Block: Publishes, and that should be published either this month or next month.

332

00:50:18.750 --> 00:50:35.070

Jason Block: and then I've I've touched on some of these, but some I have not discussed in detail. We have a couple publications that are drafted that you, the site authors that are nominated for these various papers should be seeing sometime over the next

333

00:50:35.080 --> 00:50:41.570

Jason Block: couple of months. The 1st 2 are drafted. One is an exploration of the trend in disease severity from Covid

334

00:50:41.660 --> 00:50:43.530

Jason Block: over a roughly

335

00:50:43.800 --> 00:50:45.769
Jason Block: 2 plus year period.

336
00:50:45.950 --> 00:50:52.970
Jason Block: The paper that I mentioned are cardiac complications after Covid is the other one that's drafted and actively being reviewed.

337
00:50:53.120 --> 00:51:23.099
Jason Block: We've completed some preliminary analyses on 2 topics, using the patient-level data that has been provided to CDC analysts. One is predictors of hospitalizations and death among patients with covid focused on adults, and the other one is looking at racial and ethnic disparities in uptick of oral antivirals. So preliminary analyses have been completed on those. And more work is being done with the updated data that we recently provided for CDC to analyze.

338
00:51:24.650 --> 00:51:29.409
Jason Block: And then we have a lot of manuscripts that are under consideration, and what I mean by that is that

339
00:51:29.510 --> 00:51:42.670
Jason Block: no real preliminary assessment has been determined for sure about what we're going to disseminate here. Some of these are probably more obvious than others that they definitely will produce manuscripts.

340
00:51:42.700 --> 00:51:51.400
Jason Block: whereas some of the other ones are still under exploration. So there's going to be an analysis looking at flu medication effectiveness, using the patient level data that

341
00:51:51.550 --> 00:52:04.550
Jason Block: we are giving access to to Cdc, I talked about the prep trends and that is definitely going to be a paper that is going to be worked on by Cdc. And Picornet.

342
00:52:05.240 --> 00:52:17.029
Jason Block: The work that we've done on gestational diabetes and hypertension likely will produce a manuscript. So that's still being determined. And then we recently completed a query on stroke and venous Thromboembolism

343

00:52:17.556 --> 00:52:26.440

Jason Block: after covid not stroke that we're still assessing what that query produced, and whether there are some opportunities for dissemination of that work.

344

00:52:26.750 --> 00:52:44.210

Jason Block: And then we have these 2 components to this query that's out in the network right now, one on cancer screening and follow up and readmissions to the Edf to opioid, overdose and use of opioid. Use disorder medications that we'll see what we get when we get those queries returned.

345

00:52:46.270 --> 00:52:53.680

Jason Block: So I'll close by talking about the contract for next year. So Cdc. Has definitely expressed some interest in continuing our collaboration. We expect

346

00:52:53.820 --> 00:52:57.250

Jason Block: that some component of this work will continue

347

00:52:57.540 --> 00:53:05.080

Jason Block: with a pause. So because of the way that contracts are being worked on at CDC. And with Phii.

348

00:53:05.180 --> 00:53:23.840

Jason Block: We wouldn't expect a new contract year for this work to start until October of 24. There've also been some structural changes in the way that CDC funds these type of projects. But we do expect that there will be some funding for next year, but it likely will be quite a bit less than what we've gotten in the last year.

349

00:53:24.060 --> 00:53:48.299

Jason Block: So once we get this information because these details are still pending, we don't really have any confirmation of this at all, but we hope to get that information out at some point in August and September. The scope of the next year work will probably be roughly half of what we've done in this past year. So, looking more like 5 or 6 queries compared to

350

00:53:48.350 --> 00:53:58.179

Jason Block: 12, which is what we did in the last contract year. And that's because of the budget that's available that we expect to be

available for the next year.

351

00:53:58.490 --> 00:54:04.300

Jason Block: So this is still very much up in the air. But I think, as Sharon shared at the beginning.

352

00:54:04.640 --> 00:54:14.240

Jason Block: and as Cdc. Has shared with us repeatedly that this work has been valuable to them. We've been able to produce some really important information, and we expect and hope

353

00:54:14.330 --> 00:54:29.779

Jason Block: that we can continue this collaboration for this next year, and hope to build on it for subsequent years, as needs and interest across all of the parties that are involved in this project develops and evolves.

354

00:54:31.560 --> 00:54:46.770

Jason Block: That's all I had today. This is my email. Tom Corton co-leads. This work on the cornet side with me from the Lphi Lauren Cleveland is the project manager, and I want to thank Liz Crow of Lphi, of providing some of the slides that I use for this.

355

00:54:46.880 --> 00:54:50.080

Jason Block: and I will stop there and have a few minutes.

356

00:54:50.668 --> 00:54:54.790

Jason Block: For questions and any comments that folks might have.

357

00:54:56.810 --> 00:55:02.479

Jason Block: And Janice asked, will we distribute these slides? And Janice answers, yes, we'll send these out

358

00:55:02.960 --> 00:55:07.480

Jason Block: after this, and maybe Haley can tell us as well whether or not

359

00:55:07.510 --> 00:55:15.350

Jason Block: a recording of this will be provided to, but usually we provide both the slides and the recording to sites. After this.

360

00:55:18.240 --> 00:55:21.779

TFGH Central Zoom: Hi, Jason! Yes, that's correct. We'll have the recording and the slides sent out.

361

00:55:23.790 --> 00:55:24.410

Jason Block: Great

362

00:55:26.540 --> 00:55:33.810

Jason Block: any questions or comments you can throw in the chat, or in the Q. And a. And if not

363

00:55:34.516 --> 00:55:35.750

Jason Block: as always.

364

00:55:36.246 --> 00:55:38.939

Jason Block: please feel free to reach out to me.

365

00:55:39.577 --> 00:55:43.239

Jason Block: At any point expect to hear from us

366

00:55:43.400 --> 00:55:55.019

Jason Block: for the manuscripts that we are currently and actively working on so that we can get site contributions and participation in that.

367

00:55:55.130 --> 00:56:01.470

Jason Block: And thanks Janice, for your comment. There, I can tell you that this work has really really been

368

00:56:02.694 --> 00:56:03.809

Jason Block: valuable

369

00:56:04.050 --> 00:56:09.949

Jason Block: work, and we have really appreciated all of the incredible effort that sites have

370

00:56:10.040 --> 00:56:12.960

Jason Block: contributed to this. And it's just demonstrated

371

00:56:12.970 --> 00:56:23.549

Jason Block: the assets that Pocornet has and the potential that the data across Pocornet can provide to issues of national importance

372

00:56:23.560 --> 00:56:26.689

Jason Block: and public health and population health surveillance.

373

00:56:27.970 --> 00:56:36.070

Jason Block: So, Haley, I don't know if you have any more comments, or Sharon or anyone, but we can probably wrap up there, and we'll share this. And and again, please reach out.

374

00:56:38.820 --> 00:56:46.860

TFGH Central Zoom: That's it. But thanks everybody for attending and for your participation, and we'll send out the recording and slides in the next few days.

375

00:56:48.260 --> 00:56:50.099

Jason Block: Thanks. Everyone have a great week.

376

00:56:51.090 --> 00:56:52.100

Sharon Saydah: Thanks. Everyone.